Title :
Learning to Photograph: A Compositional Perspective
Author :
Bingbing Ni ; Mengdi Xu ; Bin Cheng ; Meng Wang ; Shuicheng Yan ; Qi Tian
Author_Institution :
Adv. Digital Sci. Center, Singapore, Singapore
Abstract :
In this paper, we present an intelligent photography system which can recommend the most user-favored view rectangle for arbitrary camera input, from a photographic compositional perspective. Automating this process is difficult, due to the subjectivity of human´s aesthetics judgement and large variations of image contents, where heuristic compositional rules lack generality. Motivated by the recent prevalence of photo-sharing websites, e.g., Flickr.com, we develop a learning-based framework which discovers the underlying aesthetic photographic compositional structures from a large set of user-favored online sharing photographs and utilizes the implicitly shared knowledge among the professional photographers for aesthetically optimal view recommendation. In particular, we propose an Omni-Range Context method which explicitly encodes the spatial and geometric distributions of various visual elements in the photograph as well as cooccurrence characteristics of visual element pairs by using generative mixture models. Searching the optimal view rectangle is then formulated as maximum a posterior by imposing the trained prior distributions along with additional photographic constraints. The proposed system has the potential to operate in near real-time. Comprehensive user studies well demonstrate the effectiveness of the proposed framework for aesthetically optimal view recommendation.
Keywords :
computer vision; digital photography; learning (artificial intelligence); maximum likelihood estimation; aesthetic photographic compositional structure; generative mixture model; geometric distribution; heuristic compositional rules; intelligent photography system; learning-based framework; maximum a posteriori; omni-range context method; photo-sharing Web sites; photographic compositional perspective; photographic constraint; spatial distribution; user-favored online sharing photograph; user-favored view rectangle; Computational modeling; Context; Context modeling; Humans; Image color analysis; Image segmentation; Visualization; Generative model; maximum a posteriori; photo composition; spatial context; view recommendation;
Journal_Title :
Multimedia, IEEE Transactions on
DOI :
10.1109/TMM.2013.2241042