• DocumentCode
    1574481
  • Title

    An object-oriented approach to video coding via the CNN Universal Machine

  • Author

    Toffels, A. ; Roska, Tamáis ; Chua, Leon O.

  • Author_Institution
    Inst. of Power Syst. & Power Econ., Tech. Hochschule Aachen, Germany
  • fYear
    1996
  • Firstpage
    13
  • Lastpage
    18
  • Abstract
    The cellular neural network Universal Machine (CNNUM) is applied to object-oriented image compression algorithms and proves its universality as a hardware platform for future applications. The estimated processing times allow a real-time analysis of the video sequence and outdo the performance of other comparable digital devices reported
  • Keywords
    cellular neural nets; computer vision; data compression; image segmentation; image sequences; object-oriented methods; video coding; CNN Universal Machine; CNNUM; cellular neural network; image compression; object labelling; object-oriented method; processing times; real-time analysis; segmentation; universality; video coding; video sequence; Cellular neural networks; Image coding; Image segmentation; Labeling; Power engineering computing; Power system economics; Turing machines; Video coding; Video compression; Video sequences;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cellular Neural Networks and their Applications, 1996. CNNA-96. Proceedings., 1996 Fourth IEEE International Workshop on
  • Conference_Location
    Seville
  • Print_ISBN
    0-7803-3261-X
  • Type

    conf

  • DOI
    10.1109/CNNA.1996.566481
  • Filename
    566481