DocumentCode :
1592748
Title :
Learning Rate of Least Square Regressions with Some Kind of Mercer Kernel
Author :
Baohui Sheng ; Liqin Duan ; Peixin Ye
Author_Institution :
Dept. of Math., Shaoxing Coll. of Arts & Sci., Shaoxing, China
fYear :
2012
Firstpage :
329
Lastpage :
332
Abstract :
We consider the error estimate of least square regression with data dependent hypothesis and coefficient regularization algorithms based on general kernel. When the kernel belongs to some kind of Mercer kernel, under a mild regularity condition on the regression function, we derive a dimensional-free learning rate m-1/6.
Keywords :
learning (artificial intelligence); least squares approximations; regression analysis; Mercer kernel; coefficient regularization algorithms; data dependent hypothesis; general kernel; learning rate; least square regressions; Convergence; Educational institutions; Eigenvalues and eigenfunctions; Kernel; Least squares approximation; Machine learning; Coeffi Data Dependent Hypothesis; Learning Rate Introduction; Mercer Kernel; Square Regressions; cient Regularization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent System Design and Engineering Application (ISDEA), 2012 Second International Conference on
Conference_Location :
Sanya, Hainan
Print_ISBN :
978-1-4577-2120-5
Type :
conf
DOI :
10.1109/ISdea.2012.633
Filename :
6173215
Link To Document :
بازگشت