DocumentCode :
1611737
Title :
Self Tuning Fuzzy controller of nonlinear systems
Author :
Sahraoui, Mohamed ; Salem, Mahmoud ; Khelfi, M.F.
Author_Institution :
Fac. of Sci. & Technol., Univ. of Mascara, Mascara, Algeria
fYear :
2012
Firstpage :
912
Lastpage :
916
Abstract :
The present paper is dedicated for the presentation and implementation of an optimized technique allowing an online adjustment of the fuzzy controller parameters. Indeed, we have obtained an on-line optimized zero order Takagi-Sugeno type FIS. This method is simple and safe since, it leads to very quick and efficient optimization technique. A comparison between the STFIS (Self Tuning Fuzzy Inference System) and PID controller´s gives the improvement of the ability in sense of adaptation among the presence of noise of neuro-fuzzy controller.
Keywords :
control system synthesis; fuzzy control; fuzzy reasoning; neurocontrollers; nonlinear control systems; optimisation; three-term control; PID controller; STFIS; neuro-fuzzy controller; nonlinear systems; online adjustment; online optimized zero order Takagi-Sugeno type FIS; optimized technique; self tuning fuzzy controller; self tuning fuzzy inference system; Control systems; Cost function; Fuzzy logic; Mathematical model; Neural networks; Noise; Artificial Intelligence; STFIS (Self Tuning Fuzzy Inference System); control; neural networks; neuro-fuzzy networks; nonlinear system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 2012 6th International Conference on
Conference_Location :
Sousse
Print_ISBN :
978-1-4673-1657-6
Type :
conf
DOI :
10.1109/SETIT.2012.6482036
Filename :
6482036
Link To Document :
بازگشت