DocumentCode :
1622160
Title :
Multi-objective design space exploration using genetic algorithms
Author :
Palesi, Maurizio ; Givargis, Tony
Author_Institution :
Dip. Ing. Informatica e delle Telecomunicazioni, Catania Univ., Italy
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
67
Lastpage :
72
Abstract :
In this work, we provide a technique for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find all Pareto-optimal configurations in a multi-objective design space. Globally, our approach uses a parameter dependency model of our target parameterized SoC architecture to extensively prune non-optimal subspaces. Locally, our approach applies genetic algorithms (GAs) to discover Pareto-optimal configurations within the remaining design points. The computed Pareto-optimal configurations will represent the range of performance (e.g., timing and power) tradeoffs that are obtainable by adjusting parameter values for a fixed application that is mapped on the parameterized SoC architecture. We have successfully applied our technique to explore Pareto-optimal configurations for a number of applications mapped on a parameterized SoC architecture
Keywords :
computer architecture; embedded systems; genetic algorithms; hardware-software codesign; logic CAD; Pareto-optimal configurations; embedded systems; genetic algorithms; hardware software codesign; low power design; multi-objective design space; parameter dependency model; parameterized system-on-a-chip architecture; performance tradeoffs; Algorithm design and analysis; Computer architecture; Embedded computing; Genetic algorithms; Permission; Power system modeling; Space exploration; System-on-a-chip; Telecommunications; Timing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Hardware/Software Codesign, 2002. CODES 2002. Proceedings of the Tenth International Symposium on
Conference_Location :
Estes Park, CO
Print_ISBN :
1-58113-542-4
Type :
conf
DOI :
10.1109/CODES.2002.1003603
Filename :
1003603
Link To Document :
بازگشت