Title :
Estimating variability in functional images using a synthetic resampling approach
Author :
Maitra, R. ; O´Sullivan, Finbarr
Author_Institution :
Stat. & Data Anal. Res. Group, Bellcore, Morristown, NJ
Abstract :
Functional imaging of biological parameters like in vivo tissue metabolism is made possible by positron emission tomography (PET). Many techniques, such as mixture analysis, have been suggested for extracting such images from dynamic sequences of reconstructed PET scans. Methods for assessing the variability in these functional images are of scientific interest. The nonlinearity of the methods used in the mixture analysis approach makes analytic formulae for estimating variability intractable. The usual resampling approach is infeasible because of the prohibitive computational effort in simulating a number of sinogram datasets, applying image reconstruction, and generating parametric images for each replication. Here we introduce an approach that approximates the distribution of the reconstructed PET images by a Gaussian random field and generates synthetic realizations in the imaging domain. This eliminates the reconstruction steps in generating each simulated functional image and is therefore practical. Results of experiments done to evaluate the approach on a model one-dimensional problem are very encouraging. Post-processing of the estimated variances is seen to improve the accuracy of the estimation method. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other parametric imaging methods
Keywords :
Gaussian distribution; deconvolution; image reconstruction; image sampling; image sequences; medical image processing; positron emission tomography; Gaussian random field; PET; accuracy; analytic formulae; biological parameters; dynamic sequences; estimated variances; functional images; image extraction; imaging domain; in vivo tissue metabolism; mixture analysis; model one-dimensional problem; nonlinearity; positron emission tomography; post-processing; reconstructed PET scans; synthetic realizations; synthetic resampling approach; variability; Biochemistry; Biological system modeling; Biology computing; Computational modeling; Data analysis; Image analysis; Image generation; Image reconstruction; Parameter estimation; Positron emission tomography;
Conference_Titel :
Nuclear Science Symposium, 1996. Conference Record., 1996 IEEE
Conference_Location :
Anaheim, CA
Print_ISBN :
0-7803-3534-1
DOI :
10.1109/NSSMIC.1996.587994