• DocumentCode
    1623992
  • Title

    A two-dimensional maximum likelihood parameter estimation of Г-Г distribution for free space optical channels with weak turbulence conditions

  • Author

    Kazeminia, M. ; Mehrjoo, Mehri

  • Author_Institution
    Telecommun. Dept., Univ. of Sistan & Baluchestan, Zahedan, Iran
  • fYear
    2012
  • Firstpage
    489
  • Lastpage
    493
  • Abstract
    We present an approach for maximum likelihood (ML) parameter estimation of the Gamma-Gamma (Γ-Γ) distribution in the weak turbulence conditions of the free space optical (FSO) channels. A two-dimensional ML (2DML) estimation approach is deployed to extend our one-dimensional Γ-Γ parameter estimation (1DML) method proposed in [1]. To achieve the 2D estimation, an explicit closed form expression between the Γ-Γ parameters is extracted, where the constant factors of the expression are obtained using genetic algorithm (GA). The proposed 2DML estimation is compared with the modified method of moments based on a convex optimization (modified MOM/CVX). The numerical results demonstrate that the 2DML outperforms the modified MOM/CVX in terms of the mean square error of the estimation.
  • Keywords
    atmospheric turbulence; channel estimation; convex programming; genetic algorithms; maximum likelihood estimation; optical links; statistical distributions; convex optimization; free space optical channel; gamma-gamma distribution; genetic algorithm; two dimensional maximum likelihood parameter estimation; weak turbulence condition; Biological cells; Genetic algorithms; Maximum likelihood estimation; Method of moments; Parameter estimation; Shape; Free Space Optical (FSO); Gamma-Gamma Distribution; Genetic Algorithm; Maximum Likelihood Estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Telecommunications (IST), 2012 Sixth International Symposium on
  • Conference_Location
    Tehran
  • Print_ISBN
    978-1-4673-2072-6
  • Type

    conf

  • DOI
    10.1109/ISTEL.2012.6483038
  • Filename
    6483038