DocumentCode
1629263
Title
Facial asymmetry quantification for expression invariant human identification
Author
Liu, Y. ; Schmidt, K.L. ; Cohn, J.F. ; Weaver, R.L.
Author_Institution
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear
2002
Firstpage
198
Lastpage
204
Abstract
We investigate the effect of quantified statistical facial asymmetry as a biometric under expression variations. Our findings show that the facial asymmetry measures (AsymFaces) are computationally feasible, containing discriminative information and providing synergy when combined with Fisherface and Eigen-face methods on image data of two publically available face databases (Cohn-Kanade (T. Kanade et al., 1999) and Feret (P.J. Phillips et al., 1998))
Keywords
biometrics (access control); face recognition; visual databases; AsymFaces; Cohn-Kanade; Eigen-face methods; Feret; Fisherface methods; biometric; discriminative information; expression invariant human identification; expression variations; facial asymmetry measures; facial asymmetry quantification; image data; publicly available face databases; quantified statistical facial asymmetry; Face recognition; Humans;
fLanguage
English
Publisher
ieee
Conference_Titel
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on
Conference_Location
Washington, DC
Print_ISBN
0-7695-1602-5
Type
conf
DOI
10.1109/AFGR.2002.1004156
Filename
1004156
Link To Document