• DocumentCode
    1629263
  • Title

    Facial asymmetry quantification for expression invariant human identification

  • Author

    Liu, Y. ; Schmidt, K.L. ; Cohn, J.F. ; Weaver, R.L.

  • Author_Institution
    Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
  • fYear
    2002
  • Firstpage
    198
  • Lastpage
    204
  • Abstract
    We investigate the effect of quantified statistical facial asymmetry as a biometric under expression variations. Our findings show that the facial asymmetry measures (AsymFaces) are computationally feasible, containing discriminative information and providing synergy when combined with Fisherface and Eigen-face methods on image data of two publically available face databases (Cohn-Kanade (T. Kanade et al., 1999) and Feret (P.J. Phillips et al., 1998))
  • Keywords
    biometrics (access control); face recognition; visual databases; AsymFaces; Cohn-Kanade; Eigen-face methods; Feret; Fisherface methods; biometric; discriminative information; expression invariant human identification; expression variations; facial asymmetry measures; facial asymmetry quantification; image data; publicly available face databases; quantified statistical facial asymmetry; Face recognition; Humans;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on
  • Conference_Location
    Washington, DC
  • Print_ISBN
    0-7695-1602-5
  • Type

    conf

  • DOI
    10.1109/AFGR.2002.1004156
  • Filename
    1004156