• DocumentCode
    1633341
  • Title

    State forecasting of power systems with intermittent renewable sources using Viterbi Algorithm

  • Author

    Livani, Hanif ; Jafarzadeh, Saeed ; Evrenosoglu, Cansin Yaman ; Fadali, Sami

  • Author_Institution
    Electr. & Biomed. Eng. Dept., Univ. of Nevada, Reno, NV, USA
  • fYear
    2011
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    This paper presents a new stochastic method for state forecasting in electrical power systems with high intermittent renewable energy penetration. The method utilizes Markov Models (MM) and the Viterbi Algorithm (VA) with a grid of power system states. Only feasible states of the MM are used to model the transition matrix, which significantly reduces the amount of data needed. We simulated a 4-bus and the IEEE 14-bus system using wind and load data available from the Bonneville Power Administration (BPA). The results show good correlation between the predictions and the actual data.
  • Keywords
    Markov processes; load forecasting; matrix algebra; power grids; renewable energy sources; stochastic processes; Bonneville power administration; IEEE 14-bus system; IEEE 4-bus system; Markov model; Viterbi algorithm; electrical power system; high intermittent renewable energy source; load data; power system state forecasting; power system state grid; stochastic method; transition matrix; wind data; Data models; Forecasting; Load modeling; Markov processes; Power system dynamics; Wind power generation; Markov model; State forecasting; Viterbi algorithm; Wind power;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Power and Energy Society General Meeting, 2011 IEEE
  • Conference_Location
    San Diego, CA
  • ISSN
    1944-9925
  • Print_ISBN
    978-1-4577-1000-1
  • Electronic_ISBN
    1944-9925
  • Type

    conf

  • DOI
    10.1109/PES.2011.6039673
  • Filename
    6039673