DocumentCode :
1639845
Title :
An approach for dynamical adaptive fuzzy modeling
Author :
Cerrada, M. ; Aguilar, J. ; Colina, E. ; Titli, A.
Author_Institution :
Dept. Sistemas de Control, Los Andes Univ., Merida, Venezuela
Volume :
1
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
156
Lastpage :
161
Abstract :
In this work, an approach for the development of adaptive fuzzy models is presented. The approach allows to incorporate the system dynamics into the fuzzy membership functions which are defined in terms of a dynamic function with adjustable parameters. These parameters are adapted using a gradient descent based algorithm. Some application examples to illustrate the performance of the dynamical adaptive fuzzy models on system identification are presented
Keywords :
adaptive systems; fuzzy set theory; gradient methods; identification; modelling; adjustable parameters; dynamic function; dynamical adaptive fuzzy modeling; fuzzy membership functions; gradient descent based algorithm; system identification; Adaptive systems; Artificial neural networks; Automatic control; Design methodology; Equations; Fuzzy logic; Fuzzy sets; Fuzzy systems; Supervised learning; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7280-8
Type :
conf
DOI :
10.1109/FUZZ.2002.1004978
Filename :
1004978
Link To Document :
بازگشت