DocumentCode :
1642084
Title :
Robust parameter identification for biological circuit calibration
Author :
Nicosia, Giuseppe ; Sciacca, Eva
Author_Institution :
Dept. of Math. & Comput. Sci., Univ. of Catania, Catania
fYear :
2008
Firstpage :
1
Lastpage :
6
Abstract :
The aim of this work is to compare some deterministic optimization algorithms and evolutionary algorithms on parameter estimation in a biological circuit design problem: the negative feedback loop between the tumor suppressor p53 and the oncogene Mdm2. We compared deterministic optimization algorithms and evolutionary algorithms in terms of robustness of the resulting parameters including all sources of uncertainty into the statistical representation of reference data and evaluating the obtained solutions in terms of confident limits. The experimental results obtained show as evolutionary algorithms are more robust with respect of deterministic optimization algorithms in particular the algorithm Differential Evolution (DE) showed the best performance over the minimization of the fitting function.
Keywords :
biology computing; evolutionary computation; genetics; parameter estimation; Mdm2; biological circuit design; deterministic optimization algorithm; differential evolution; evolutionary algorithm; negative feedback loop; oncogene; parameter identification; tumor suppressor p53; Calibration; Circuit synthesis; Design optimization; Evolution (biology); Evolutionary computation; Negative feedback loops; Neoplasms; Parameter estimation; Robustness; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on
Conference_Location :
Athens
Print_ISBN :
978-1-4244-2844-1
Electronic_ISBN :
978-1-4244-2845-8
Type :
conf
DOI :
10.1109/BIBE.2008.4696760
Filename :
4696760
Link To Document :
بازگشت