Title :
High-efficiency silicon heterojunction solar cells: From physics to production lines
Author :
Wolf, S. De ; Andrault, Y. ; Barraud, L. ; Bartlome, R. ; Bätzner, D. ; Bôle, P. ; Choong, G. ; Demaurex, B. ; Descoeudres, A. ; Guérin, C. ; Holm, N. ; Kobas, M. ; Lachenal, D. ; Mendes, B. ; Strahm, B. ; Tesfai, M. ; Wahli, G. ; Wuensch, F. ; Zicarelli,
Author_Institution :
Photovoltaics & Thin Film Electron. Lab., Ecole Polytech. Fed. de Lausanne (EPFL), Neuchâtel, Switzerland
Abstract :
Silicon heterojunction technology (Si-HJT) consists of thin amorphous silicon layers on monocrystalline silicon wafers and allows for photovoltaic solar cells with energy-conversion efficiencies above 20%, also at industrial-production level. This article reports how this may be achieved. First, we focus on the surface-passivation mechanism of intrinsic and doped amorphous silicon films in such solar cells, enabling record-high values for the open-circuit voltage. Next, the industrial upscaling in large-area reactors of such film deposition is discussed, including the fabrication of solar cells with energy-conversion efficiencies as high as 21%.
Keywords :
silicon; solar cells; HJT; doped amorphous silicon films; energy-conversion efficiencies; high-efficiency silicon heterojunction solar cells; industrial-production level; monocrystalline silicon wafers; open-circuit voltage; photovoltaic solar cells; production lines; silicon heterojunction technology; surface-passivation mechanism; thin amorphous silicon layers;
Conference_Titel :
Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-5797-7
DOI :
10.1109/ICSICT.2010.5667849