DocumentCode :
1642844
Title :
Learning object intrinsic structure for robust visual tracking
Author :
Wang, Qiang ; Xu, Guangyou ; Ai, Haizhou
Author_Institution :
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
Volume :
2
fYear :
2003
Abstract :
In this paper, a novel method to learn the intrinsic object structure for robust visual tracking is proposed. The basic assumption is that the parameterized object state lies on a low dimensional manifold and can be learned from training data. Based on this assumption, firstly we derived the dimensionality reduction and density estimation algorithm for unsupervised learning of object intrinsic representation, the obtained non-rigid part of object state reduces even to 2 dimensions. Secondly the dynamical model is derived and trained based on this intrinsic representation. Thirdly the learned intrinsic object structure is integrated into a particle-filter style tracker. We will show that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle-filter style tracker more robust and reliable. Experiments show that the learned tracker performs much better than existing trackers on the tracking of complex non-rigid motions such as fish twisting with self-occlusion and large inter-frame lip motion. The proposed method also has the potential to solve other type of tracking problems.
Keywords :
computer vision; image motion analysis; image representation; object recognition; optical tracking; stereo image processing; target tracking; unsupervised learning; complex nonrigid motion; computer vision; density estimation algorithm; dimensionality reduction; dynamical model; fish twisting; interframe lip motion; low dimensional manifold; object intrinsic representation; object intrinsic structure; object state reduction; parameterized object state; particle-filter style tracker; probabilistic inference; robust visual tracking; self-occlusion; training data; unsupervised learning; Computer science; Computer vision; Intelligent structures; Intelligent systems; Laboratories; Particle filters; Particle tracking; Robustness; Shape; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-1900-8
Type :
conf
DOI :
10.1109/CVPR.2003.1211474
Filename :
1211474
Link To Document :
بازگشت