Title :
Energy Decay Rate of the Plate Equation with Potential and Indefinite Damping
Author_Institution :
Sichuan Univ., Chengdu
Abstract :
We consider the plate equation with an indefinite sign damping and a zero order potential term. By means of the global Carleman-type estimate and the usual energy estimate, we show that the energy of the system decays exponentially. Also, using the classical perturbation theory, we give an explicit upper bound estimate on the negative damping to guarantee the exponential decay rate.
Keywords :
damping; exponential distribution; perturbation techniques; plates (structures); classical perturbation theory; energy decay rate; exponential decay rate; indefinite sign damping; negative damping; plate equation; upper bound estimate; zero order potential term; Damping; Equations; Hydrogen; Mathematics; Observability; State estimation; Upper bound; Carleman Estimate; Exponential Decay Rate; Indefinite Damping; Observability Inequality; Plate Equation;
Conference_Titel :
Control Conference, 2007. CCC 2007. Chinese
Conference_Location :
Hunan
Print_ISBN :
978-7-81124-055-9
Electronic_ISBN :
978-7-900719-22-5
DOI :
10.1109/CHICC.2006.4347040