DocumentCode :
1657586
Title :
PSO-based Parameter Estimation of Nonlinear Systems
Author :
Meiying, Ye ; Xiaodong, Wang
Author_Institution :
Zhejiang Normal Univ., Jinhua
fYear :
2007
Firstpage :
533
Lastpage :
536
Abstract :
A technique based on particle swarm optimization is proposed for improving the accuracy of parameter estimation of nonlinear systems. The effectiveness of the particle swarm optimization algorithms is compared with different genetic algorithms in terms of parameter accuracy. Simulation results of two kinds of process systems will be illustrated to show that the more accurate estimation of unknown system parameters can be achieved by using the proposed technique.
Keywords :
genetic algorithms; nonlinear control systems; parameter estimation; particle swarm optimisation; PSO; genetic algorithms; nonlinear systems; parameter accuracy; parameter estimation; particle swarm optimization; Control engineering; Control systems; Degradation; Genetic algorithms; Nonlinear control systems; Nonlinear systems; Parameter estimation; Particle swarm optimization; Physics; System identification; Nonlinear Systems; Parameter Estimation; Particle Swarm Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2007. CCC 2007. Chinese
Conference_Location :
Hunan
Print_ISBN :
978-7-81124-055-9
Electronic_ISBN :
978-7-900719-22-5
Type :
conf
DOI :
10.1109/CHICC.2006.4347606
Filename :
4347606
Link To Document :
بازگشت