DocumentCode :
1661414
Title :
Extension of the objective functions in fuzzy clustering
Author :
Ménard, Michel
Author_Institution :
Lab. d´´Informatique et d´´Imagerie Industrielle, Univ. de La Rochelle, France
Volume :
2
fYear :
2002
fDate :
6/24/1905 12:00:00 AM
Firstpage :
1450
Lastpage :
1455
Abstract :
It is pointed out that extreme physical information provides a natural frame for the extension of the objective function based methods when applied in a non-extensive setting. This formalism provides an interpretation of parameters like for example the fuzzifier exponent m. Moreover, it is relevant to show the connection between the power and Gaussian laws and to bridge the gap between the possibilistic and probabilistic approaches in fuzzy clustering
Keywords :
fuzzy set theory; information theory; pattern clustering; possibility theory; probability; Gaussian laws; extreme physical information; fuzzifier exponent; fuzzy clustering; objective function based methods; possibilistic approaches; power laws; probabilistic approaches; Algorithm design and analysis; Bridges; Clustering algorithms; Entropy; Equations; Physics; Probability; Prototypes; Statistics; Thermodynamics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on
Conference_Location :
Honolulu, HI
Print_ISBN :
0-7803-7280-8
Type :
conf
DOI :
10.1109/FUZZ.2002.1006718
Filename :
1006718
Link To Document :
بازگشت