DocumentCode :
1665495
Title :
Modeling and combined control of aerial vehicle based on aerodynamic force and lateral thrust
Author :
Wang Zheng-jie ; Long Yang-bo ; Lu Jing ; Song Wei
Author_Institution :
Sch. of Mechatron. Eng., Beijing Inst. of Technol., Beijing, China
fYear :
2010
Firstpage :
106
Lastpage :
111
Abstract :
The aim of the traditional aerodynamic control is to change the aerial vehicle attack angle by angular motion induced by a moment, which is generated by deflecting its control surfaces, so as to make it be able to generate pneumatic lift and obtain the expected lateral acceleration. However, this maneuvering process will result in a delay between sending and conducting of command signals. Compared with the aerodynamic control mode, in the direct lateral thrust control mode, the lateral control jet engine is used to generate control force and torque. Therefore, in this paper a combined control mode of lateral thrust and aerodynamic force is proposed to solve the problem of rapid response and high available overload. First, the control scheme is established using the aerodynamic control as the main input and the reaction-jet control system (RCS) as the auxiliary input. Then the dynamic and kinematics mathematic model of the aerial vehicle is built based on the direct lateral thrust control. As the final step, aiming at the task of terminal stage of the aerial vehicle to attack the target from the top, the combined control system is designed according to fuzzy adaptive algorithm. Simulation results indicate that the overload required under the combined control is lower than that under the aerodynamic control. So this combined control system can satisfy the requirements of the aerial vehicle overload better than the traditional mode does.
Keywords :
aerodynamics; fuzzy control; jet engines; aerial vehicle control; aerodynamic control; aerodynamic force; fuzzy adaptive algorithm; lateral thrust control; reaction-jet control system; Acceleration; Aerodynamics; Vehicles; Combined control; Dive overhead attack technology; Fuzzy control; Reaction-jet control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Modelling, Identification and Control (ICMIC), The 2010 International Conference on
Conference_Location :
Okayama
Print_ISBN :
978-1-4244-8381-5
Electronic_ISBN :
978-0-9555293-3-7
Type :
conf
Filename :
5553587
Link To Document :
بازگشت