• DocumentCode
    1667587
  • Title

    High-Order Tensor Decomposition for Large-Scale Data Analysis

  • Author

    Longzhuang Li ; Boulware, Douglas

  • Author_Institution
    Sch. of Eng. & Comput. Sci., Air Force Res. Lab. Texas A&M Univ.-Corpus, Christi, TX, USA
  • fYear
    2015
  • Firstpage
    665
  • Lastpage
    668
  • Abstract
    Higher-order tensor decomposition is a basis for many important data mining tasks and the efficient large-scale tensor decomposition algorithms will have positive impact on clustering, trend detection, and anomaly detection. In the paper, we develop a scalable and distributed version of the Tucker tensor decomposition, MR-T, using the Hadoop MapReduce framework. We avoid large matrix-matrix multiplication and exploit the sparsity of large data sets to minimize intermediate data and flops by sequentially computing the intermediate matrices and generating the intermediate tensor vector-wise.
  • Keywords
    data analysis; data mining; matrix multiplication; pattern clustering; tensors; Hadoop MapReduce framework; MR-T; Tucker tensor decomposition; anomaly detection; clustering; data mining tasks; high-order tensor decomposition; large data set sparsity; large-scale data analysis; large-scale tensor decomposition algorithms; matrix-matrix multiplication; trend detection; Algorithm design and analysis; Clustering algorithms; Data mining; MATLAB; Matrix decomposition; Signal processing algorithms; Tensile stress; MapReduce-based Tucker decomposition (MR-T); large-scale data analysis; tensor decomposition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Big Data (BigData Congress), 2015 IEEE International Congress on
  • Conference_Location
    New York, NY
  • Print_ISBN
    978-1-4673-7277-0
  • Type

    conf

  • DOI
    10.1109/BigDataCongress.2015.104
  • Filename
    7207288