DocumentCode
1668262
Title
MCD: Mutual Clustering across Multiple Social Networks
Author
Yu, Philip S. ; Jiawei Zhang
Author_Institution
Univ. of Illinois at Chicago, Chicago, IL, USA
fYear
2015
Firstpage
762
Lastpage
771
Abstract
Community detection in online social networks has been a hot research topic in recent years. Meanwhile, to enjoy more social network services, users nowadays are usually involved in multiple online social networks simultaneously, some of which can share common information and structures. Networks that involve some common users are named as multiple "partially aligned networks". In this paper, we want to detect communities of multiple partially aligned networks simultaneously, which is formally defined as the "Mutual Clustering" problem. The "Mutual Clustering" problem is very challenging as it has two important issues to address: (1) how to preserve the network characteristics in mutual community detection? and (2) how to utilize the information in other aligned networks to refine and disambiguate the community structures of the shared users? To solve these two challenges, a novel community detection method, MCD (Mutual Community Detector), is proposed in this paper. MCD can detect social community structures of users in multiple partially aligned networks at the same time with full considerations of (1) characteristics of each network, and (2) information of the shared users across aligned networks. Extensive experiments conducted on two real-world partially aligned heterogeneous social networks demonstrate that MCD can solve the "Mutual Clustering" problem very well.
Keywords
pattern clustering; social networking (online); MCD; multiple social networks; mutual clustering; mutual community detector; online social networks; Big data; Knowledge engineering; Linear programming; Optimization; Twitter; Data Mining; Multiple Aligned Social Networks; Mutual Clustering;
fLanguage
English
Publisher
ieee
Conference_Titel
Big Data (BigData Congress), 2015 IEEE International Congress on
Conference_Location
New York, NY
Print_ISBN
978-1-4673-7277-0
Type
conf
DOI
10.1109/BigDataCongress.2015.127
Filename
7207311
Link To Document