Title :
A voluntary-based real-time incentive scheme for smart grid demand management
Author :
Ying Bi ; Jamalipour, Abbas
Author_Institution :
Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia
Abstract :
In power system, consumers´ power demand are highly desirable information by grid operators for asset management and grid operation. However, users may hesitate to report such private information due to the potential privacy leakage risk and other extra cost. A compulsory-based scheme which forces consumers to reveal private data, or a punishment scheme in which consumers get penalty for unwillingness to disclose might not be desired. Given the importance of demand information, in this paper, we acknowledge consumers´ ownership rights on their private data and propose a novel voluntary-based real-time incentive scheme (RTIS) to promote demand management in the smart grid. In RTIS, Load Serving Entity (LSE) plays the role of power retailer. LSE rewards cooperating consumers with a discounted electricity retail price to compensate the consumers´ extra cost associated with participation. By carefully selecting a discount rate, RTIS ensures that LSE can collect sufficient demand response for load anticipation without detriment to its market revenue. Simulation results confirm that our proposed scheme can achieve satisfactory social welfare even compared with compulsory demand upload schemes.
Keywords :
asset management; demand side management; electricity supply industry; incentive schemes; power system economics; power system security; smart power grids; LSE; RTIS; asset management; compulsory-based scheme; demand response; discount rate selection; discounted electricity retail price; grid operation; load anticipation; load serving entity; ownership rights; potential privacy leakage risk; power demand; power industry; power system; punishment scheme; smart grid demand management; social welfare; voluntary-based real-time incentive scheme; Aggregates; Electricity; Electricity supply industry; Load modeling; Power demand; Real-time systems; Smart grids;
Conference_Titel :
Telecommunications (ICT), 2014 21st International Conference on
Conference_Location :
Lisbon
Print_ISBN :
978-1-4799-5139-0
DOI :
10.1109/ICT.2014.6845156