DocumentCode :
1675541
Title :
Optimal quantizers for distributed Bayesian estimation
Author :
Vempaty, Aditya ; Biao Chen ; Varshney, Pramod K.
Author_Institution :
Dept. of EECS, Syracuse Univ., Syracuse, NY, USA
fYear :
2013
Firstpage :
4893
Lastpage :
4897
Abstract :
In this paper, we consider the problem of quantizer design for distributed estimation under the Bayesian criterion. We derive general optimality conditions under the assumption of conditionally independent observations at the local sensors and show that for a conditionally unbiased and efficient estimator at the Fusion Center, identical quantizers are optimal when local observations have identical distributions. This results in an N-fold reduction in complexity where N is the number of sensors. We illustrate our approach by applying it to the location parameter estimation problem.
Keywords :
phase shift keying; probability; space-time block codes; PSK constellation; carefully factorizing phase-shift keying constellation; distributed concatenated Alamouti code designs; one-way relay networks; space-time block code; uniquely-factorable constellation pair; Bayes methods; Estimation; Noise; Optimization; Parameter estimation; Random variables; Sensors; Distributed Estimation; Posterior Cramér Rao Lower Bound (PCRLB); Quantizer Design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2013.6638591
Filename :
6638591
Link To Document :
بازگشت