• DocumentCode
    1676367
  • Title

    Schreier decomposition of loops

  • Author

    Nagy, Peter T.

  • Author_Institution
    Inst. of Appl. Math., Obuda Univ., Budapest, Hungary
  • fYear
    2015
  • Firstpage
    135
  • Lastpage
    140
  • Abstract
    The aims of this paper are to find algebraic characterizations of Schreier loops and explore the limits of the non-associative generalization of the theory of Schreier extensions. A loop can have Schreier decomposition with respect to a normal subgroup if and only if the subgroup is the middle and right nuclear. In this case the conjugation by elements of the loop induces inner automorphisms on the normal subgroup if and only if the subgroup commutes with a suitable left transversal through the identity. Schreier loops which are Schreier extensions of the same loop by the same normal subgroups are characterized.
  • Keywords
    group theory; Schreier decomposition; Schreier extensions theory; Schreier loops; automorphisms; conjugation; nonassociative generalization; subgroup; Computational intelligence; Context; Indexes; Informatics; Kernel; Non-associative Schreier extension; Schreier loop; nucleus;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Applied Computational Intelligence and Informatics (SACI), 2015 IEEE 10th Jubilee International Symposium on
  • Conference_Location
    Timisoara
  • Type

    conf

  • DOI
    10.1109/SACI.2015.7208186
  • Filename
    7208186