Title :
Generalized circular autoregressive models for modeling isotropic and anisotropic textures
Author_Institution :
Dept. of ECE, George Washington Univ., DC, USA
Abstract :
A new class of random field models, called generalized circular autoregressive (GCAR) models, is introduced. The GCAR models have non-causal neighbors which have the same autoregressive parameter values if they are on the same circle or ellipse, and have circular or elliptical correlation structure. The parameter estimation is also considered, and a multi-step estimation algorithm is presented. The efficacy of GCAR models in modeling real textures is demonstrated by synthesizing images resembling real textures
Keywords :
autoregressive processes; correlation methods; image texture; parameter estimation; random processes; GCAR models; anisotropic textures modeling; autoregressive parameter; circular correlation structure; elliptical correlation structure; generalized circular AR models; generalized circular autoregressive models; image synthesis; isotropic texture modeling; multi-step estimation algorithm; parameter estimation; random field models; Anisotropic magnetoresistance; Clouds; Gaussian processes; Interpolation; Markov random fields; Maximum likelihood estimation; Parameter estimation; Solid modeling; Testing;
Conference_Titel :
Image Processing, 2001. Proceedings. 2001 International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
0-7803-6725-1
DOI :
10.1109/ICIP.2001.958441