• DocumentCode
    1682133
  • Title

    Frames from groups: Generalized bounds and dihedral groups

  • Author

    Thill, Markus ; Hassibi, Babak

  • Author_Institution
    Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
  • fYear
    2013
  • Firstpage
    6043
  • Lastpage
    6047
  • Abstract
    The problem of designing low coherence matrices and low-correlation frames arises in a variety of fields, including compressed sensing, MIMO communications and quantum measurements. The challenge is that one must control the (n over 2) pairwise inner products of the columns of the matrix. In this paper, we follow the group code approach of David Slepian [1], which constructs frames using unitary group representations and which in general reduces the number of distinct inner products to n-1. We examine representations of cyclic groups as well as generalized dihedral groups, and we expand upon previous results which bound the coherence of the resulting frames.
  • Keywords
    MIMO communication; compressed sensing; correlation methods; group codes; matrix algebra; MIMO communications; compressed sensing; cyclic groups; dihedral groups; distinct inner products; generalized bounds; group code approach; low coherence matrices; low-correlation frames; pairwise inner products; quantum measurements; unitary group representations; Coherence; Correlation; Heating; Indexes; MIMO; Upper bound; Vectors; Coherence; dihedral group; frame; unit norm tight frame; unitary system;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
  • Conference_Location
    Vancouver, BC
  • ISSN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2013.6638825
  • Filename
    6638825