Title :
An extendable multi-purpose 3D neuromorphic fabric using nanoscale memristors
Author :
Manem, Harika ; Beckmann, Karsten ; Min Xu ; Carroll, Robert ; Geer, Robert ; Cady, Nathaniel C.
Author_Institution :
Coll. of Nanoscale Sci. & Eng., SUNY Polytech. Inst., Albany, NY, USA
Abstract :
Neuromorphic computing offers an attractive means for processing and learning complex real-world data. With the emergence of the memristor, the physical realization of cost-effective artificial neural networks is becoming viable, due to reduced area and increased performance metrics than strictly CMOS implementations. In the work presented here, memristors are utilized as synapses in the realization of a multi-purpose heterogeneous 3D neuromorphic fabric. This paper details our in-house memristor and 3D technologies in the design of a fabric that can perform real-world signal processing (i.e., image/video etc.) as well as everyday Boolean logic applications. The applicability of this fabric is therefore diverse with applications ranging from general-purpose and high performance logic computing to power-conservative image detection for mobile and defense applications. The proposed system is an area-effective heterogeneous 3D integration of memristive neural networks, that consumes significantly less power and allows for high speeds (3D ultra-high bandwidth connectivity) in comparison to a purely CMOS 2D implementation. Images and results provided will illustrate our state of the art 3D and memristor technology capabilities for the realization of the proposed 3D memristive neural fabric. Simulation results also show the results for mapping Boolean logic functions and images onto perceptron based neural networks. Results demonstrate the proof of concept of this system, which is the first step in the physical realization of the multi-purpose heterogeneous 3D memristive neuromorphic fabric.
Keywords :
Boolean functions; CMOS integrated circuits; fabrics; memristors; neural chips; perceptrons; signal processing; three-dimensional integrated circuits; 3D memristive neural fabric; 3D technology; Boolean logic function application; CMOS implementation; area effective heterogeneous 3D integration; artificial neural network; complementary metal oxide semiconductor; defense application; extendable multipurpose 3D neuromorphic fabric; logic computing; memristive neural network; mobile application; nanoscale memristor; neuromorphic computing; perceptron; power conservative image detection; signal processing; Decision support systems; Fabrics; Memristors; Metals; Neuromorphics; Neurons; Three-dimensional displays; 3D integrated circuits; Neuromorphics; image processing; memristor; nanoelectronics; neural networks;
Conference_Titel :
Computational Intelligence for Security and Defense Applications (CISDA), 2015 IEEE Symposium on
Conference_Location :
Verona, NY
Print_ISBN :
978-1-4673-7556-6
DOI :
10.1109/CISDA.2015.7208625