• DocumentCode
    169374
  • Title

    Secure degrees of freedom region of the Gaussian interference channel with secrecy constraints

  • Author

    Jianwei Xie ; Ulukus, Sennur

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
  • fYear
    2014
  • fDate
    2-5 Nov. 2014
  • Firstpage
    361
  • Lastpage
    365
  • Abstract
    The sum secure degrees of freedom (s.d.o.f.) of the K-user interference channel (IC) with secrecy constraints has been determined recently as equation [1], [2]. In this paper, we determine the entire s.d.o.f. region of this channel model. The converse includes constraints both due to secrecy as well as due to interference. Although the portion of the region close to the optimum sum s.d.o.f. point is governed by the upper bounds due to secrecy constraints, the other portions of the region are governed by the upper bounds due to interference constraints. Different from the existing literature, in order to fully understand the characterization of the s.d.o.f. region of the IC, one has to study the 4-user case, i.e., the 2 or 3-user cases do not illustrate the generality of the problem. In order to prove the achievability, we use the polytope structure of the converse region. The extreme points of the converse region are achieved by a (K - m)-user IC with confidential messages, m helpers, and N external eavesdroppers, for m ≥ 1 and a finite N. A byproduct of our results in this paper is that the sum s.d.o.f. is achieved only at one extreme point of the s.d.o.f. region, which is the symmetric-rate extreme point.
  • Keywords
    Gaussian channels; interference (signal); security of data; wireless channels; Gaussian interference channel; K-user interference channel; channel model; converse region; interference constraints; polytope structure; secrecy constraints; secure degrees of freedom; symmetric-rate extreme point; upper bounds; Integrated circuits; Interference channels; Noise; Receivers; Transmitters; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Workshop (ITW), 2014 IEEE
  • Conference_Location
    Hobart, TAS
  • ISSN
    1662-9019
  • Type

    conf

  • DOI
    10.1109/ITW.2014.6970854
  • Filename
    6970854