DocumentCode :
1695391
Title :
Jakarta congestion mapping and classification from twitter data extraction using tokenization and na??ve bayes classifier
Author :
Septianto, Gigih Rezki ; Mukti, Firman Fakhri ; Nasrun, Muhammad ; Gozali, Alfian Akbar
Author_Institution :
Fac. of Electr. & Commun. Eng., Telkom Univ., Bandung, Indonesia
fYear :
2015
Firstpage :
1
Lastpage :
6
Abstract :
The data potential of Twitter is a powerful resource for data mining exploration. This research aims to pull the traffic information in Jakarta from Twitter. The first output is to develop a web application that can display Jakarta´s traffic situation in real time. The process include filtering and tokenizing to get the traffic jam´s location and direction to be displayed on Google Map. The second output is to develop a predictive analysis system to oversee Jakarta traffic pattern in a certain period of time using Naïve Bayes Classifier.
Keywords :
Bayes methods; data mining; pattern classification; social networking (online); Google Map; Jakarta congestion mapping and classification; Twitter data extraction; data mining exploration; naïve Bayes classifier; predictive analysis system; Accuracy; Asia; Data mining; Google; Multimedia communication; Training data; Twitter; data mining; jakarta; tokenization; twitter; congestion; na??ve bayes classifier;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia and Broadcasting (APMediaCast), 2015 Asia Pacific Conference on
Conference_Location :
Kuta
Print_ISBN :
978-1-4799-7966-0
Type :
conf
DOI :
10.1109/APMediaCast.2015.7210266
Filename :
7210266
Link To Document :
بازگشت