DocumentCode :
1701224
Title :
Eigenvalue shift supperresolution algorithm
Author :
Yongjun, Zhang ; Zongzhi, Chen ; Wei, Ye
Author_Institution :
Inst. of Command & Technol., COSTIND, Beijing, China
Volume :
1
fYear :
1996
Firstpage :
185
Abstract :
This paper provides a new approach to spatial spectral estimation, called eigenvalue shift superresolution algorithm (ESSA). This method avoids the inverse covariance matrix. It can be applied to the processing of data received by spatially distributed arrays of sensors
Keywords :
adaptive signal processing; array signal processing; covariance matrices; direction-of-arrival estimation; eigenvalues and eigenfunctions; signal resolution; spectral analysis; array signal processing; covariance matrix; data processing; eigenvalue shift supperresolution algorithm; high resolution adaptive methods; spatial spectral estimation; spatially distributed sensor arrays; Adaptive arrays; Covariance matrix; Eigenvalues and eigenfunctions; Phased arrays; Sensor arrays; Sensor phenomena and characterization; Signal processing; Signal resolution; Spatial resolution; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, 1996., 3rd International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7803-2912-0
Type :
conf
DOI :
10.1109/ICSIGP.1996.567094
Filename :
567094
Link To Document :
بازگشت