DocumentCode :
1705554
Title :
Nonparametric permutation test versus optimum parametric test for radar detection
Author :
Alvarez-Vaquero, Francisco ; Sanz-González, José L.
Author_Institution :
ETSI Telecomunicacion, Univ. Politecnica de Madrid, Spain
Volume :
1
fYear :
1996
Firstpage :
225
Abstract :
In this paper, we analyze a detector based on the optimum permutation test, applied to nonparametric radar detection which provides good performance without a large computational effort. We compare it with the parametric test in the Neyman-Pearson sense. We also show the characteristic of detectability of the optimum permutation test versus parametric one under Gaussian noise environments and different types of target models (nonfluctuating, Swerling I and Swerling II). The detection probability versus signal-to-noise ratio is calculated by Monte-Carlo simulations for different parameter values (pulse number N, reference samples M and false alarm probability Pfa)
Keywords :
Gaussian noise; Monte Carlo methods; nonparametric statistics; probability; radar detection; Gaussian noise; Monte-Carlo simulation; Neyman-Pearson test; Swerling I targets; Swerling II targets; detection probability; false alarm probability; nonfluctuating targets; nonparametric permutation test; optimum parametric test; radar detection; signal-to-noise ratio; target models; Detectors; Distribution functions; Gaussian noise; Particle measurements; Probability; Radar applications; Radar detection; Signal to noise ratio; Telecommunication standards; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, 1996., 3rd International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7803-2912-0
Type :
conf
DOI :
10.1109/ICSIGP.1996.567110
Filename :
567110
Link To Document :
بازگشت