• DocumentCode
    1706583
  • Title

    Parameter estimation for additive nonlinear systems

  • Author

    Jing Chen ; Rui Ding

  • Author_Institution
    Wuxi Prof. Coll. of Sci. & Technol., Wuxi, China
  • fYear
    2013
  • Firstpage
    1762
  • Lastpage
    1766
  • Abstract
    This paper proposes a stochastic gradient algorithm and a recursive least squares algorithm for additive nonlinear systems. By using the Weierstrass approximation theorem, the model of the additive nonlinear systems can be changed to an identification model, then based on the identification model, two algorithms are proposed to estimate all the unknown parameters of the systems. An example is provided to show the effectiveness of the proposed algorithms.
  • Keywords
    approximation theory; gradient methods; least squares approximations; nonlinear systems; parameter estimation; recursive estimation; stochastic processes; Weierstrass approximation theorem; additive nonlinear systems; identification model; parameter estimation; recursive least squares algorithm; stochastic gradient algorithm; Additives; Computational modeling; Least squares approximations; Mathematical model; Nonlinear systems; Parameter estimation; Least squares; Nonlinear system; Parameter estimation; Stochastic gradient; Weierstrass approximation theorem;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (CCC), 2013 32nd Chinese
  • Conference_Location
    Xi´an
  • Type

    conf

  • Filename
    6639712