DocumentCode :
1711359
Title :
Sparsity enhancing window functions for analogue-to-information conversion with compressed sensing
Author :
Craven, Leon ; Nagy, Oliver ; Hanlen, Leif
Author_Institution :
NICTA, Canberra, ACT, Australia
fYear :
2010
Firstpage :
93
Lastpage :
96
Abstract :
We show that data reconstruction with analogue-to-information converters can generally be improved by applying a window function. For data recovery via compressed sensing, the choice of window function depends on the number of samples acquired, and any window is better than no window. We also demonstrate that windows can be applied a posteriori in random sampling analogue-to-information converter systems.
Keywords :
signal reconstruction; signal sampling; analogue-to-information conversion; compressed sensing; data reconstruction; random sampling; sparsity enhancing window functions; Australia; Compressed sensing; Discrete Fourier transforms; Frequency conversion; Government; Hardware; Sampling methods; Signal sampling; Sparse matrices; Time measurement; Analogue-To-Information Conversion; Compressed Sensing; Window Function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications Theory Workshop (AusCTW), 2010 Australian
Conference_Location :
Canberra, ACT
Print_ISBN :
978-1-4244-5432-7
Type :
conf
DOI :
10.1109/AUSCTW.2010.5426774
Filename :
5426774
Link To Document :
بازگشت