Title :
Permutations under Spectral Transforms
Author_Institution :
Eur. Centre for Soft Comput., Asturias
Abstract :
The paper studies the conditions under which permutations on the truth vector of a multiple-valued function are preserved under a spectral transform. Both the cases of the Vilenkin-Chrestenson and of the Generalized Reed Muller transforms are discussed. One condition to preserve a permutation is that the corresponding permutation matrix is self-similar under the transform matrix.
Keywords :
Fourier transforms; Reed Muller transforms; permutations; spectral transforms; transform matrix; Algebra; Books; Computer science; Conferences; Discrete Fourier transforms; Discrete transforms; Fast Fourier transforms; Fourier transforms; Galois fields; Multivalued logic; Reed Muller transform; Vilenkin-Chrestenson transform; permutation preservation;
Conference_Titel :
Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on
Conference_Location :
Dallas, TX
Print_ISBN :
978-0-7695-3155-7
DOI :
10.1109/ISMVL.2008.16