• DocumentCode
    1743936
  • Title

    Efficient minimum spanning tree construction without Delaunay triangulation [VLSI CAD]

  • Author

    Zhou, Hai ; Shenoy, Narendra ; Nicholls, William

  • Author_Institution
    Synopsys Inc., Mountain View, CA, USA
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    192
  • Lastpage
    197
  • Abstract
    Minimum spanning tree problem is a very important problem in VLSI CAD. Given n points in a plane, a minimum spanning tree is a set of edges which connects all the points and has a minimum total length. A naive approach enumerates edges on all pairs of points and takes at least Ω(n2) time. More efficient approaches find a minimum spanning tree only among edges in the Delaunay triangulation of the points. However, Delaunay triangulation is not well defined in rectilinear distance. In this paper, we first establish a framework for minimum spanning tree construction which is based on a general concept of spanning graphs. A spanning graph is a natural definition and not necessarily a Delaunay triangulation. Based on this framework, we then design an O(nlogn) sweep-line algorithm to construct a rectilinear minimum spanning tree without using Delaunay triangulation
  • Keywords
    VLSI; circuit layout CAD; integrated circuit interconnections; integrated circuit layout; network topology; trees (mathematics); VLSI CAD; minimum spanning tree construction; minimum total length; rectilinear minimum spanning tree; spanning graphs; Algorithm design and analysis; Computational geometry; Design automation; Euclidean distance; Testing; Tree graphs; Very large scale integration; Wire;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific
  • Conference_Location
    Yokohama
  • Print_ISBN
    0-7803-6633-6
  • Type

    conf

  • DOI
    10.1109/ASPDAC.2001.913303
  • Filename
    913303