• DocumentCode
    1744153
  • Title

    Particle filters for recursive model selection in linear and nonlinear system identification

  • Author

    Kadirkamanathan, Visakan ; Jaward, Mohamed Hisham ; Fabri, S.G. ; Kadirkamanathan, M.

  • Author_Institution
    Dept. of Autom. Control & Syst. Eng., Sheffield Univ., UK
  • Volume
    3
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    2391
  • Abstract
    Recursive model selection can be addressed within the Bayesian framework, the multiple model algorithm being one such approach for linear Gaussian systems. The recent advances in nonlinear non-Gaussian estimation with the sequential Monte Carlo algorithms, such as the particle filter, allow the application of Bayesian inference to the development of recursive model selection algorithms for general nonlinear non-Gaussian systems. Such an algorithm is developed in this paper and applied to a linear autoregressive and nonlinear autoregressive systems
  • Keywords
    Bayes methods; Monte Carlo methods; autoregressive processes; filtering theory; linear systems; nonlinear systems; recursive estimation; state estimation; state-space methods; Bayesian inference; Monte Carlo method; autoregressive systems; identification; linear system; nonlinear system; parameter estimation; particle filtering; recursive model selection; state estimation; state space method; Bayesian methods; Gaussian noise; Monte Carlo methods; Nonlinear systems; Parameter estimation; Particle filters; Power system modeling; Recursive estimation; State estimation; System identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2000. Proceedings of the 39th IEEE Conference on
  • Conference_Location
    Sydney, NSW
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-6638-7
  • Type

    conf

  • DOI
    10.1109/CDC.2000.914157
  • Filename
    914157