• DocumentCode
    174876
  • Title

    Odometry error estimation for a differential drive robot snowplow

  • Author

    Kreinar, Edward J. ; Quinn, Roger D.

  • fYear
    2014
  • fDate
    5-8 May 2014
  • Firstpage
    1122
  • Lastpage
    1129
  • Abstract
    This paper presents a velocity-augmented Extended Kalman Filter (EKF) which can estimate both systematic and non-systematic odometry errors for a differential drive mobile robot. The proposed EKF is validated both within simulation and using postprocessed robot snowplow data from the Institute of Navigation´s 2013 Autonomous Snowplow Competition. Potential sensor configurations are explored using EKF Monte-Carlo simulations with Global Positioning System (GPS) sensors or multilateration ranging sensors.
  • Keywords
    Kalman filters; distance measurement; mobile robots; nonlinear filters; EKF; EKF Monte-Carlo simulations; GPS sensors; Global Positioning System; differential drive mobile robot; differential drive robot snowplow; multilateration ranging sensors; nonsystematic odometry errors; odometry error estimation; postprocessed robot snowplow data; sensor configurations; systematic odometry errors; velocity-augmented extended Kalman filter; Measurement uncertainty; Mobile robots; Robot sensing systems; Systematics; Velocity measurement; Wheels;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Position, Location and Navigation Symposium - PLANS 2014, 2014 IEEE/ION
  • Conference_Location
    Monterey, CA
  • Print_ISBN
    978-1-4799-3319-8
  • Type

    conf

  • DOI
    10.1109/PLANS.2014.6851482
  • Filename
    6851482