DocumentCode :
1748924
Title :
Forward perturbation algorithm for a general class of recurrent network
Author :
De Jesús, Orlando ; Hagan, Martin T.
Author_Institution :
Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
Volume :
4
fYear :
2001
fDate :
2001
Firstpage :
2626
Abstract :
This paper introduces a general class of dynamic network, the layered digital dynamic network. It then derives the forward perturbation algorithm for computing the gradient of the network error with respect to the weights of the network
Keywords :
gradient methods; perturbation techniques; recurrent neural nets; forward perturbation algorithm; layered digital dynamic network; network error gradient; recurrent network; Backpropagation algorithms; Computer architecture; Computer errors; Computer networks; Delay lines; Differential equations; Feedback loop; Neural networks; Neurofeedback; Output feedback;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-7044-9
Type :
conf
DOI :
10.1109/IJCNN.2001.938784
Filename :
938784
Link To Document :
بازگشت