• DocumentCode
    1752621
  • Title

    Optimal Component Fusion Steady-State Smoothing for Discrete Multichannel ARMA Signals

  • Author

    Sun, Shuli

  • Author_Institution
    Dept. of Autom., Heilongjiang Univ., Harbin
  • Volume
    1
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    1438
  • Lastpage
    1441
  • Abstract
    Based on white noise estimators and the optimal fusion algorithm in the LMV (linear minimum variance) sense, distributed optimal fusion steady-state smoothers with scalar weights are given for all components of discrete multichannel ARMA (autoregressive moving average) signals with correlated noises. The precision of the fusion smoothers is higher than that of local smoothers, but is lower than that of the fusion smoother with matrix weights. However, the computational burden can be reduced since only scalar weights are required. Applying it to a double-channel ARMA signal system with three sensors shows the effectiveness
  • Keywords
    autoregressive moving average processes; sensor fusion; white noise; autoregressive moving average signals; correlated noises; discrete multichannel ARMA signals; distributed optimal fusion; linear minimum variance; steady-state smoothing; white noise estimators; Filters; Gaussian distribution; Laboratories; Maximum likelihood estimation; Noise measurement; Sensor systems; Smoothing methods; Steady-state; Sun; White noise; ARMA signal; Multisensor; component fusion smoother; information fusion;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
  • Conference_Location
    Dalian
  • Print_ISBN
    1-4244-0332-4
  • Type

    conf

  • DOI
    10.1109/WCICA.2006.1712586
  • Filename
    1712586