Title :
Real-World Empirical Studies on Multi-Channel Reliability and Spectrum Usage for Home-Area Sensor Networks
Author :
Mo Sha ; Hackmann, Gregory ; Chenyang Lu
Author_Institution :
Dept. of Comput. Sci. & Eng., Washington Univ. in St. Louis, St. Louis, MO, USA
Abstract :
Home area networks (HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy. These applications impose unique network management constraints, requiring low data rates but high network reliability in the face of unpredictable wireless environments. This paper presents two in-depth empirical studies on wireless channels in real homes, providing key design guidelines for meeting the network management constraints of HAN applications. The spectrum study analyzes spectrum usage in the 2.4 GHz band where HANs based on the IEEE 802.15.4 standard must coexist with existing wireless devices. We characterize the ambient wireless environment in six apartments through passive spectrum analysis across the entire 2.4 GHz band over seven days in each apartment. We find that the wireless conditions in these residential environments are much more complex and varied than in a typical office environment. Moreover, while 802.11 signals play a significant role in spectrum usage, there also exists non-negligible noise from non-802.11 devices. The multi-channel link study measures the reliability of different 802.15.4 channels through active probing with motes in ten apartments. We find that there is not always a persistently reliable channel over 24 hours, and that link reliability does not exhibit cyclic behavior at daily or weekly timescales. Nevertheless, reliability can be maintained through infrequent channel hopping, suggesting dynamic channel hopping as a key tool for meeting the network management requirements of HAN applications. Our empirical studies provide important guidelines and insights in designing HANs for residential environments.
Keywords :
Zigbee; home networks; telecommunication network management; telecommunication network reliability; wireless channels; wireless sensor networks; HAN; IEEE 802.15.4; ambient wireless environment; dynamic channel hopping; frequency 2.4 GHz; high network reliability; home-area sensor networks; multichannel link study; multichannel reliability; network management constraints; nonnegligible noise; real-world empirical study; residential environments; smart energy; spectrum usage; typical office environment; unpredictable wireless environments; wireless channels; wireless sensors; IEEE 802.11 Standards; IEEE 802.15 Standards; Interference; Reliability; Wireless communication; Wireless sensor networks; Empirical study; home-area sensor networks; multi-channel; spectrum;
Journal_Title :
Network and Service Management, IEEE Transactions on
DOI :
10.1109/TNSM.2012.091312.120237