DocumentCode :
1768213
Title :
Patient-specific models from inter-patient biological models and clinical records
Author :
Tronci, Enrico ; Mancini, Toni ; Salvo, Ivano ; Sinisi, S. ; Mari, Federico ; Melatti, Igor ; Massini, A. ; Davi, F. ; Dierkes, T. ; Ehrig, R. ; Roblitz, S. ; Leeners, B. ; Kruger, T.H.C. ; Egli, M. ; Ille, F.
fYear :
2014
fDate :
21-24 Oct. 2014
Firstpage :
207
Lastpage :
214
Abstract :
One of the main goals of systems biology models in a health-care context is to individualise models in order to compute patient-specific predictions for the time evolution of species (e.g., hormones) concentrations. In this paper we present a statistical model checking based approach that, given an inter-patient model and a few clinical measurements, computes a value for the model parameter vector (model individualisation) that, with high confidence, is a global minimum for the function evaluating the mismatch between the model predictions and the available measurements. We evaluate effectiveness of the proposed approach by presenting experimental results on using the GynCycle model (describing the feedback mechanisms regulating a number of reproductive hormones) to compute patient-specific predictions for the time evolution of blood concentrations of E2 (Estradiol), P4 (Progesterone), FSH (Follicle-Stimulating Hormone) and LH (Luteinizing Hormone) after a certain number of clinical measurements.
Keywords :
biology computing; electronic health records; formal verification; patient monitoring; FSH; GynCycle model; LH; blood concentrations; clinical measurements; clinical records; estradiol; follicle-stimulating hormone; health care context; inter-patient biological models; luteinizing hormone; model individualisation; model parameter vector; model predictions; patient-specific models; patient-specific predictions; progesterone; species concentrations; statistical model checking; systems biology models; time evolution; Barium; Biochemistry; Biological system modeling; Computational modeling; Evolution (biology); Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Formal Methods in Computer-Aided Design (FMCAD), 2014
Conference_Location :
Lausanne
Type :
conf
DOI :
10.1109/FMCAD.2014.6987615
Filename :
6987615
Link To Document :
بازگشت