DocumentCode :
1780525
Title :
A lower bound on the Rényi entropy of convolutions in the integers
Author :
Liyao Wang ; Jae Oh Woo ; Madiman, Mokshay
Author_Institution :
Dept. of Phys., Yale Univ., New Haven, CT, USA
fYear :
2014
fDate :
June 29 2014-July 4 2014
Firstpage :
2829
Lastpage :
2833
Abstract :
A simple new lower bound is provided for the Rényi entropy of the convolution of probability distributions on the integers in terms of certain (discrete) rearrangements of these distributions. This inequality may be thought of as an entropy power inequality for integer-valued random variables.
Keywords :
convolution; entropy; number theory; random processes; statistical distributions; convolutions Renyi entropy; entropy power inequality; integer-valued random variables; integers; lower bound; probability distribution rearrangement; Additives; Convex functions; Educational institutions; Entropy; Information theory; Random variables;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/ISIT.2014.6875350
Filename :
6875350
Link To Document :
بازگشت