• DocumentCode
    1787764
  • Title

    CRLB under K-distributed observation with parameterized mean

  • Author

    El korso, Mohammed Nabil ; Renaux, Alexandre ; Forster, Philippe

  • Author_Institution
    IUT de Ville d´Avray, Univ. Paris-Ouest X, Ville-d´Avray, France
  • fYear
    2014
  • fDate
    22-25 June 2014
  • Firstpage
    461
  • Lastpage
    464
  • Abstract
    A semi closed-form expression of the Fisher information matrix in the context of K-distributed observations with parameterized mean is given and related to the classical, i.e. Gaussian case. This connection is done via a simple multiplicative factor, which only depends on the intrinsic parameters of the texture and the size of the observation vector. Finally, numerical simulation is provided to corroborate the theoretical analysis.
  • Keywords
    estimation theory; matrix algebra; vectors; CRLB; Cramér-Rao lower bound; Fisher information matrix; Gaussian case; K-distributed observation; multiplicative factor; numerical simulation; observation vector; parameterized mean; Arrays; Clutter; Context; Covariance matrices; Noise; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th
  • Conference_Location
    A Coruna
  • Type

    conf

  • DOI
    10.1109/SAM.2014.6882442
  • Filename
    6882442