Title :
Queuing the trust: Secure backpressure algorithm against insider threats in wireless networks
Author :
Zhuo Lu ; Sagduyu, Yalin E. ; Li, Jason H.
fDate :
April 26 2015-May 1 2015
Abstract :
The backpressure algorithm is known to provide throughput optimality in routing and scheduling decisions for multi-hop networks with dynamic traffic. The essential assumption in the backpressure algorithm is that all nodes are benign and obey the algorithm rules governing the information exchange and underlying optimization needs. Nonetheless, such an assumption does not always hold in realistic scenarios, especially in the presence of security attacks with intent to disrupt network operations. In this paper, we propose a novel mechanism, called virtual trust queuing, to protect backpressure algorithm based routing and scheduling protocols from various insider threats. Our objective is not to design yet another trust-based routing to heuristically bargain security and performance, but to develop a generic solution with strong guarantees of attack resilience and throughput performance in the backpressure algorithm. To this end, we quantify a node´s algorithm-compliance behavior over time and construct a virtual trust queue that maintains deviations from expected algorithm outcomes. We show that by jointly stabilizing the virtual trust queue and the real packet queue, the backpressure algorithm not only achieves resilience, but also sustains the throughput performance under an extensive set of security attacks.
Keywords :
queueing theory; radio networks; routing protocols; telecommunication scheduling; telecommunication security; telecommunication traffic; dynamic traffic; heuristic bargain security; information exchange; multihop wireless network threat; routing protocol; scheduling protocol; secure backpressure algorithm; virtual trust queuing; Algorithm design and analysis; Heuristic algorithms; Optimization; Queueing analysis; Routing; Scheduling; Throughput;
Conference_Titel :
Computer Communications (INFOCOM), 2015 IEEE Conference on
Conference_Location :
Kowloon
DOI :
10.1109/INFOCOM.2015.7218389