DocumentCode :
1802725
Title :
A neural networks based approach for fault detection and diagnosis: application to a real process
Author :
de la Fuente, M.J. ; Vega, P.
Author_Institution :
Dept. de Ingenieria de Sistemas y Autom., Valladolid Univ., Spain
fYear :
1995
fDate :
28-29 Sep 1995
Firstpage :
188
Lastpage :
193
Abstract :
This paper proposes a new fault detection and diagnosis (FDD) method based on the online parameter estimation using the frequency contents of the signals and backpropagation neural networks. When a fault occurs the parameters in a nonlinear mathematical model of the process change. A method for detecting and tracking the different values of the parameters is proposed, which tries to be robust with respect to low frequency disturbances. The new FDD method together with a classical fault detection method are applied to a wastewater treatment plant, placed in Manresa, Spain. A set of real experiments are presented in order to compare and validate the methods in industrial applications
Keywords :
water treatment; Manresa; Spain; backpropagation; fault detection; fault diagnosis; neural networks; nonlinear mathematical model; online parameter estimation; wastewater treatment plant; Fault detection; Fault diagnosis; Mathematical model; Neural networks; Parameter estimation; Resonance light scattering; Robustness; Statistics; Uncertainty; Wastewater;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 1995., Proceedings of the 4th IEEE Conference on
Conference_Location :
Albany, NY
Print_ISBN :
0-7803-2550-8
Type :
conf
DOI :
10.1109/CCA.1995.555678
Filename :
555678
Link To Document :
بازگشت