• DocumentCode
    180339
  • Title

    Music signal separation based on Bayesian spectral amplitude estimator with automatic target prior adaptation

  • Author

    Murota, Yuki ; Kitamura, Daichi ; Nakai, Shohei ; Saruwatari, Hiroshi ; Nakamura, Shigenari ; Takahashi, Y. ; Kondo, K.

  • Author_Institution
    Nara Inst. of Sci. & Technol., Nara, Japan
  • fYear
    2014
  • fDate
    4-9 May 2014
  • Firstpage
    7490
  • Lastpage
    7494
  • Abstract
    In this paper, we propose a new approach for addressing music signal separation based on the generalized Bayesian estimator with automatic prior adaptation. This method consists of three parts, namely, the generalized MMSE-STSA estimator with a flexible target signal prior, the NMF-based dynamic interference spectrogram estimator, and closed-form parameter estimation for the statistical model of the target signal based on higher-order statistics. The statistical model parameter of the hidden target signal can be detected automatically for optimal Bayesian estimation with online target-signal prior adaptation. Our experimental evaluation can show the efficacy of the proposed method.
  • Keywords
    Bayes methods; audio signal processing; higher order statistics; least mean squares methods; music; Bayesian spectral amplitude estimator; NMF-based dynamic interference spectrogram estimator; automatic prior adaptation; automatic target prior adaptation; closed-form parameter estimation; generalized MMSE-STSA estimator; hidden target signal; higher-order statistics; music signal separation; online target-signal; statistical model parameter; Estimation; Interference; Multiple signal classification; Source separation; Spectrogram; Speech; Speech processing; MMSE-STSA estimator; Music signal separation; NMF; higher-order statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
  • Conference_Location
    Florence
  • Type

    conf

  • DOI
    10.1109/ICASSP.2014.6855056
  • Filename
    6855056