DocumentCode :
1805524
Title :
Simultaneous application of clustering and correspondence analysis
Author :
Yamakawa, Asuka ; Kanaumi, Yoshihiko ; Ichihashi, Hidetomo ; Miyoshi, Tetsuya
Author_Institution :
Dept. of Ind. Eng., Osaka Prefecture Univ., Japan
Volume :
6
fYear :
1999
fDate :
36342
Firstpage :
4334
Abstract :
An algorithm which simultaneously applies the fuzzy c-means clustering algorithm and the correspondence analysis is developed. Maximization of an objective function yields membership of fuzzy clusters and assigns values to categories and individuals in the correspondence analysis. A regularization term is introduced into the objective function. The algorithms are Picard iteration through necessary conditions of the optimality for the objective function. An adaptive method using eigenvalues is introduced
Keywords :
eigenvalues and eigenfunctions; fuzzy set theory; iterative methods; optimisation; pattern clustering; Picard iteration; adaptive method; correspondence analysis; eigenvalues; fuzzy c-means clustering algorithm; fuzzy cluster membership; objective function; objective function maximization; Algorithm design and analysis; Clustering algorithms; Data mining; Databases; Educational institutions; Eigenvalues and eigenfunctions; Entropy; Industrial engineering; Lagrangian functions; Marine vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1999. IJCNN '99. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-5529-6
Type :
conf
DOI :
10.1109/IJCNN.1999.830865
Filename :
830865
Link To Document :
بازگشت