DocumentCode :
1812843
Title :
Some methods of stochastic calculus for fractional Brownian motion
Author :
Duncan, T.E. ; Hu, Y.Z. ; Pasik-Duncan, B.
Author_Institution :
Dept. of Math., Kansas Univ., Lawrence, KS, USA
Volume :
3
fYear :
1999
fDate :
1999
Firstpage :
2390
Abstract :
Some results for stochastic calculus for a fractional Brownian motion are described and an application to identification is given. A stochastic integral is defined that has mean zero and an explicit expression is given for the second moment. Another stochastic integral is defined and the two stochastic integrals are explicitly related. An Ito formula is given for a smooth function of a fractional Brownian motion. A parameter identification problem is described for a linear stochastic differential equation with fractional Brownian motion and a family of strongly consistent estimates is given
Keywords :
Brownian motion; integral equations; parameter estimation; Ito formula; fractional Brownian motion; linear stochastic differential equation; parameter identification problem; second moment; smooth function; stochastic calculus; stochastic integral; strongly consistent estimates; Brownian motion; Calculus; Differential equations; Mathematics; Motion estimation; Parameter estimation; Reservoirs; Stochastic processes; Stochastic resonance; Water resources;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
Conference_Location :
Phoenix, AZ
ISSN :
0191-2216
Print_ISBN :
0-7803-5250-5
Type :
conf
DOI :
10.1109/CDC.1999.831282
Filename :
831282
Link To Document :
بازگشت