DocumentCode
1815490
Title
Nano-aperture plasmonic VCSELS
Author
KOYAMA, Pr
fYear
2008
fDate
25-29 May 2008
Firstpage
1
Lastpage
1
Abstract
We have successfully investigated the selfassembly mechanism for InAs quantum dots (QDs) formed on GaAs(001) by using a unique scanning tunnelling microscope (STM) placed within the molecular beam epitaxy (MBE) growth chamber. The images elucidate the mechanism of QD nucleation, demonstrating directly that not all deposited In is initially incorporated into the lattice, hence providing a large supply of material to rapidly form QDs via islands containing tens of atoms. kinetic Monte Carlo (kMC) simulations based on firstprinciples calculations show that tiny alloy fluctuations, like atomistic point defects, in the InGaAs wetting layer prior to are crucial in determining nucleation sites.
Keywords
III-V semiconductors; Monte Carlo methods; gallium arsenide; molecular beam epitaxial growth; nanotechnology; nucleation; plasmonics; point defects; scanning tunnelling microscopy; self-assembly; semiconductor quantum dots; surface emitting lasers; wetting; GaAs; GaAs(001); InAs-GaAs; MBE; STM; atomistic point defects; first principles calculations; fluctuations; kinetic Monte Carlo simulations; molecular beam epitaxy growth; nanoaperture plasmonic VCSELS; nucleation; quantum dots; scanning tunnelling microscopy; selfassembly mechanism; wetting layer; Atomic layer deposition; Kinetic theory; Lattices; Microscopy; Molecular beam epitaxial growth; Monte Carlo methods; Plasmons; Quantum dots; Tunneling; Vertical cavity surface emitting lasers; GaAs; In-situ; InAs; Quantum Dots; molecular beam epixtaxy; scanning tunneling microscope;
fLanguage
English
Publisher
ieee
Conference_Titel
Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference on
Conference_Location
Versailles
ISSN
1092-8669
Print_ISBN
978-1-4244-2258-6
Electronic_ISBN
1092-8669
Type
conf
DOI
10.1109/ICIPRM.2008.4703045
Filename
4703045
Link To Document