• DocumentCode
    1815756
  • Title

    Automatic Segmentation Methods for Various CT Images Using Morphology Operation and Statistical Technique

  • Author

    Lee, Myung-Eun ; Kim, Soo-Hyung ; Kim, Sun-Worl ; Sung-Ryul Oh

  • Author_Institution
    Chonnam Nat. Univ., Gwangju
  • fYear
    2007
  • fDate
    6-8 Sept. 2007
  • Firstpage
    105
  • Lastpage
    110
  • Abstract
    In this paper, we present an automatic segmentation method for medical image based on the statistical technique. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model to mode an image statistically. Next, the deterministic annealing expectation maximization algorithm is employed to estimate the parameters of the GMM for the clustering algorithm. We apply the statistical technique for automatic segmentation of input CT image. The experimental results show that our method can segment exactly various CT images.
  • Keywords
    Gaussian processes; computerised tomography; expectation-maximisation algorithm; image segmentation; mathematical morphology; medical image processing; pattern clustering; statistical analysis; Gaussian mixture model; automatic CT image segmentation; clustering algorithm; deterministic annealing expectation maximization algorithm; medical image; morphology operation; parameter estimation; statistical technique; Biomedical imaging; Clustering algorithms; Computed tomography; Histograms; Image segmentation; Medical diagnostic imaging; Morphological operations; Morphology; Parameter estimation; Pixel;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Computer Communication and Processing, 2007 IEEE International Conference on
  • Conference_Location
    Cluj-Napoca
  • Print_ISBN
    978-1-4244-1491-8
  • Type

    conf

  • DOI
    10.1109/ICCP.2007.4352148
  • Filename
    4352148