DocumentCode :
1815756
Title :
Automatic Segmentation Methods for Various CT Images Using Morphology Operation and Statistical Technique
Author :
Lee, Myung-Eun ; Kim, Soo-Hyung ; Kim, Sun-Worl ; Sung-Ryul Oh
Author_Institution :
Chonnam Nat. Univ., Gwangju
fYear :
2007
fDate :
6-8 Sept. 2007
Firstpage :
105
Lastpage :
110
Abstract :
In this paper, we present an automatic segmentation method for medical image based on the statistical technique. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model to mode an image statistically. Next, the deterministic annealing expectation maximization algorithm is employed to estimate the parameters of the GMM for the clustering algorithm. We apply the statistical technique for automatic segmentation of input CT image. The experimental results show that our method can segment exactly various CT images.
Keywords :
Gaussian processes; computerised tomography; expectation-maximisation algorithm; image segmentation; mathematical morphology; medical image processing; pattern clustering; statistical analysis; Gaussian mixture model; automatic CT image segmentation; clustering algorithm; deterministic annealing expectation maximization algorithm; medical image; morphology operation; parameter estimation; statistical technique; Biomedical imaging; Clustering algorithms; Computed tomography; Histograms; Image segmentation; Medical diagnostic imaging; Morphological operations; Morphology; Parameter estimation; Pixel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Computer Communication and Processing, 2007 IEEE International Conference on
Conference_Location :
Cluj-Napoca
Print_ISBN :
978-1-4244-1491-8
Type :
conf
DOI :
10.1109/ICCP.2007.4352148
Filename :
4352148
Link To Document :
بازگشت