• DocumentCode
    1817561
  • Title

    Bayesian non-parametric simulation of hazard functions

  • Author

    Belyi, Dmitriy ; Popova, Elmira ; Morton, David ; Damien, Paul

  • Author_Institution
    Oper. Res. & Ind. Eng., Univ. of Texas at Austin, Austin, TX, USA
  • fYear
    2009
  • fDate
    13-16 Dec. 2009
  • Firstpage
    475
  • Lastpage
    482
  • Abstract
    In Bayesian non-parametric statistics, the extended gamma process can be used to model the class of monotonic hazard functions. However, numerical evaluations of the posterior process are very difficult to compute for realistic sample sizes. To overcome this, we use Monte Carlo methods introduced by Laud, Smith, and Damien (1996) to simulate from the posterior process. We show how these methods can be used to approximate the increasing failure rate of an item, given observed failures and censored times. We then use the results to compute the optimal maintenance schedule under a specified maintenance policy.
  • Keywords
    Bayes methods; Monte Carlo methods; failure analysis; hazards; reliability theory; Bayesian nonparametric simulation; Monte Carlo methods; extended gamma process; item failure rate; maintenance policy; monotonic hazard functions; posterior process; Bayesian methods; Computational modeling; Distributed computing; Failure analysis; Hazards; Industrial engineering; Operations research; State-space methods; Statistics; Weibull distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Simulation Conference (WSC), Proceedings of the 2009 Winter
  • Conference_Location
    Austin, TX
  • Print_ISBN
    978-1-4244-5770-0
  • Type

    conf

  • DOI
    10.1109/WSC.2009.5429359
  • Filename
    5429359