Title :
Performance evaluation of a multipinhole small animal SPECT system
Author :
Meikle, Steven R. ; Kench, Peter ; Wojcik, Randy ; Smith, Mark F. ; Weisenberger, Andrew G. ; Majewski, Stan ; Lerch, Michael ; Rosenfeld, Anatoly B.
Author_Institution :
Dept. of PET & Nucl. Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
Abstract :
We have designed and constructed a small animal SPECT system based on compact, high resolution detectors and multipinhole apertures. The scanner is currently configured with two detectors mounted on a rotating gantry. Each detector comprises a NaI(Tl) crystal array (1×1×5 mm elements), a 12 cm diameter position-sensitive photomultiplier tube (Hamamatsu R3292) and a tungsten aperture with 1 or more pinholes. In this study, we performed phantom experiments to characterise the planar and tomographic performance of the scanner. Intrinsic resolution measured with a highly collimated 99mTc point source stepped across the detector face was 1.0 ± 0;.1 FWHM and 2.9 ± 0.1 mm FWTM. Energy resolution at 140 keV varied from 14% FWIIM for central crystals to 19% for edge crystals and was 20% FWHM for the whole detector normalised spectrum. Intrinsic uniformity for the central field of view was 2.4% differential and 3.8% integral. Reconstructed spatial resolution was 1.2 mm FWHM at the centre of the field of view and 1.2, 1.7 mm FWHM (radial, tangential) at 10 mm off-axis, using typical geometric parameters for mouse and rat brain imaging. Reconstructed images of a micro deluxe hot rod phantom demonstrate the high resolution of the system and indicate similar resolution and improved signal-to-noise is obtained with a 2 pinhole aperture compared with a single pinhole. We conclude that the performance characteristics of this system make it suitable for high resolution imaging of small laboratory animals.
Keywords :
brain; image reconstruction; image resolution; medical image processing; phantoms; single photon emission computed tomography; 12 cm; 140 keV; Hamamatsu R3292 position-sensitive photomultiplier tube; NaI(Tl) crystal array; compact high resolution detectors; energy resolution; micro deluxe hot rod phantom; mouse brain imaging; multipinhole apertures; multipinhole small animal SPECT system; performance evaluation; phantom experiments; rat brain imaging; reconstructed spatial resolution; tungsten aperture; Animals; Apertures; Crystals; Detectors; Energy resolution; Face detection; High-resolution imaging; Image reconstruction; Imaging phantoms; Spatial resolution;
Conference_Titel :
Nuclear Science Symposium Conference Record, 2003 IEEE
Print_ISBN :
0-7803-8257-9
DOI :
10.1109/NSSMIC.2003.1352270